ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • machine learning
    Cording/Python 2021. 2. 1. 23:07

    from sklearn.datasets import load_iris

    iris_dataset = load_iris()

     

    print("iris_dataset의 키 : {}".format(iris_dataset.keys()))

    print("타깃의 이름 : ", iris_dataset['feature_names'])

    print("data type : ", type(iris_dataset['data']))

    print("size of data : ", iris_dataset['data'].shape)

    print("data : \n", iris_dataset['data'][:3])

    print("target의 크기 : ", iris_dataset['target'].shape)

    print("target : ", iris_dataset['target'])

    print("target name : ", iris_dataset['target_names'])

     

    from sklearn.model_selection import train_test_split

    X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data'], iris_dataset['target'], random_state=0)

    print("X_train :", X_train.shape)

    print("X_test : ", X_teset.shape)

    print("y_train: ", y_train.shape)

    print("y_test : ", y_test.shape)

     

    iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)

     

    pd.plotting.scatter_matrix(iris_dataframe. c=y_train, figsize(15,15), marker='o', hist_kwds={'bins':20}, s=60, alpha=.8, cmap=mglearn.cm3)

     

    from sklearn.neighbors import KNeighborsClassifier

    knn = KNeighborsClassifier(ne_neighbors=1)

    knn.fit(X_train, y_train)

    X_new = np.arrary([[5,2,9,1,0,2]])

    prediction = knn.predict(X_new)

    print("예측 : ", prediction)

    y_pred = knn.predcit(X_test)

    print("예측값 : ", y_pred)

    print("정확 : {:.2f}", format(knn.score(X_test, y_test))

    'Cording > Python' 카테고리의 다른 글

    learning  (1) 2021.02.13
    for, 문자열  (0) 2021.02.05
    전처리  (0) 2021.01.28
    Graph  (0) 2021.01.22
    jupyter-data visualization  (0) 2021.01.21

    댓글

Designed by Tistory.