-
learningCording/Python 2021. 2. 13. 01:24
Scikit-Learn 라이브러리
import pandas ad pd
df = pd.read_csv(C:/myCode/data/basketball_stat.csv')
data_df = df[0:100]
data_df.head()
from sklearn.model_selection import train_test_split
# 학습데이터 80%, 테스트데이터 20%로 분리
train, test = train_test_split(data_df, best_size=0.2)
train.shape
# 일부만 가져옴.
train_data_df = train[['3P',"BLK',"TRB']]
train_label_df = train[["Pos']]
tarin_data_df.head()
# KNN 라이브 추가
from sklearn.neighbors import KNeighborsClassfier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(train_data, train_label)
pred_knn = knn.predict(test_data)
pred_knn
from sklearn import metrics
ac_score = metrics.accuracy_score(test_label, pred_knn)
print('accuracy:', ac_score)
# 모델 예측 정확도 확인
comparison = pd.DataFrame({'prediction':pred_knn, 'ground_truth':test_label})
comparison
# svm 모델 학습
from sklearn import svm
clf = svm.SVC(C = 1, gamma = 0.1) # gamma = 0.1은 가정
clif.fit(train_data, train_label)
# 테스트 데이터로 예측
pred_svm = clf.predict(test_data)
pred.svm
# 모델 예측 정확도 확인
from sklearn import metrics
ac_score = metrics.accuracy.score(test_label, pred_svm)
print('accuracy:', ac_score)
* Deep Learning
import tensorflow as tf
import pandas as pd
import numpy as np
df = pd.read_csv()
Data_set = df.values
Data_set
from sklearn.model_selection import train_test_split
# 데아터셋에서 학습데이터, 테스트데이터를 분리
train, test = train_test_split(Data_set, test_size = 0.2)
# 속성과 클래스 분리
X_train = train[:, 0:17]
Y_train = train[:, 17]
X_train
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(30, input dim=17, activation='relu'))
model.add(dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error', optimizer = 'adam', metrics=['accuracy'])
'Cording > Python' 카테고리의 다른 글
for, 문자열 (0) 2021.02.05 machine learning (0) 2021.02.01 전처리 (0) 2021.01.28 Graph (0) 2021.01.22 jupyter-data visualization (0) 2021.01.21